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THE COLLINEARITY KILL CHAIN: 

 

Using the warfighter’s engagement sequence to detect, classify, localize, and neutralize a 

vexing and seemingly intractable problem in regression analysis 

 “I believe that a substantial part of the regression and correlation analysis which have been 

made on statistical data in recent years is nonsense … If the statistician does not dispose of an 

adequate technique for the statistical study of the confluence hierarchy, he will run the risk of 

adding more and more variates [explanatory variables] in the study until he gets a set that is in 

fact multiple collinear and where his attempt to determine a regression equation is therefore 

absurd.” 

Ragnar Frisch, 1934, Nobel Laureate, Economics 
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1.0 INTRODUCTION 

Defense analysts apply the regression model in a remarkably wide set of circumstances ranging 

from cost estimating to systems engineering to policy formulation.  The model’s frequency of use and 

scope of application are perhaps unparalleled in the professional’s statistical toolkit.  Unfortunately, 

Frisch’s multiple collinear data sets are a frequent if often undetected companion in these parametric 

forays into national security.  Whether exposed or not, they can undermine the foundations of the 

analysis, and, worst-case, like an IED, blowup the regression’s computational algorithm. 

A fundamental postulate of the classical least-squares model of equation (1) is the absence of a perfect, 

linear dependence among the explanatory or predictor variables. 
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A serious condition may still persist in cases where perfect collinearity is avoided, but only just narrowly.  

And therein lies the root of the problem.  To paraphrase Alain Enthoven, 

Just how much linear dependence can be tolerated without undue 

damage to parameter estimates? 

A less extreme but still often serious condition arises when this assumption is met, but perhaps only by a 

narrow margin.  The term “multicollinearity,” coined by the Nobel laureate Ragnar Frisch, captures all 

degrees of the problem.  It’s defined as the presence of a linear relationship, possibly but not necessarily 

perfect, between two or more of the supposedly “independent” variables in a regression equation, as 

exemplified in equation (2), where X2 and X3 from equation (1) are linearly but not perfectly related 

  (2) X
2i
 = a + bX

3i
 + μ

i. 

Multicollinearity may be weak or strong in practical applications.  But, it’s always present.  Put another 

way, the explanatory variables are never orthogonal.  There’s always at least some small degree of linear 

association between them.  Indeed, there’s a natural tendency noted by Frisch to include in a regression 

equation additional variables that overlap the information content of those already present.  This holds 

especially true in disciplines such as defense cost analysis where fresh information on potentially relevant 

independent variables is difficult or impossible to obtain.  Good practice in CER development requires an 

assessment of the severity of multicollinearity since the consequences may include “bouncing β’s,” or 

unstable coefficient estimates, unreliable hypothesis testing, and wrongly specified models.  The critical 

question becomes, from the practitioner’s perspective, 

At what point does multicollinearity become harmful, and what can be done about it? 

 Somewhat akin to mine countermeasures in its complexity, the problem of multicollinearity 

defies easy solution.  The statistical literature regards multicollinearity as one of the most vexing and 

intractable problems in all of regression analysis.  Many tools and techniques are required for its detection 

and correction. 

 This paper examines the issue of multicollinearity from the fresh perspective of a statistical 

warfighter.  A kill-chain of steps is offered to defeat this illusive foe.  Heuristics, chi-squared tests, t-tests, 
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and eigenvalues are the Aegis, Predator, Bradley, and Ma Deuce 50-caliber statistical equivalents used to 

detect, classify, localize, and neutralize the problem.  

1.1 BACKGROUND 

 Multicollinearity often occurs when different explanatory variables in a regression equation rise 

and fall together.  The sample data set, then, contains seemingly redundant information.  Theory is often 

more fertile than data, and additional X’s sometimes capture only nuances of the same, basic information.  

A frequently cited example is correlation between “learn” and “rate” in a cost-improvement curve, 

especially when rate is measured over-simplistically as lot size, or Qt – Qt-1, without taking into 

consideration the total work flow of a fabrication facility.1 

 Figure 1 contrasts weak and strong collinearity. In the case of weak correlation between X1 and 

X2 (left side) the regression plane is well-determined, with only slight movements in repeated samples.  

Classical ordinary least squares, in this case, yields stable estimates of β
1
 and β

2
.  In the case of strong 

correlation between X1 and X2 (right side), on the other hand, observations (ordered triplets, X1, X2, Y) 

are in a tube.  The regression plane wobbles, with significantly different positions likely in repeated 

samples but with E(Y) unaffected.  The net result is unstable although unbiased estimates of β
1
 and β

2
. 

                Weak Correlation Between the X’s                                   Strong Correlation Between the X’s 

 

  

 

 

 

 

 

 

 

 

 

Figure 1 

  

                                                           
1 “Statistical Methods for Learning Curves and Cost Analysis,” Goldberg, Matt, and Touw, Anduin, Center for 

Naval Analysis, 2003, pages 15-16. 
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Figures 2 and 3 demonstrate the concept on a simulated set of data from the same population 

regression model, 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀.  Each plot holds constant the variance of 𝜀 and the number 

of data points.  The only difference is the amount of correlation between 𝑋1 and 𝑋2.  Each plot shows a 

3D view of the data along with a best-fit plane.  

Figure 2 executes the experiment with high correlation, 95%.  In this scenario, the fit is highly 

unstable.  The plane swings widely about the points.  Each of the six successive samples from the 

population (2a to 2f) results in a drastically different regression equation.  Therefore, in the practical real-

world scenario with only one sample collection of data, but with high collinearity between the X’s, the 

estimated regression equation may or may not be a reasonable model of the true, underlying variable 

relationships. 

(2a)

 

(2b)

 

(2c)

 
(2d)

 

(2e)

 

(2f) 

 
Figure 2 

Figure 3, on the other hand, has a low correlation, 20%.  In this case, the regression plane is much more 

stable.  While it experiences random variation, the planes – or regression models – are similar to each 

other (3a to 3f).  Regardless of the sample collected, the result is likely a reasonable estimate of the true, 

underlying relationship between the dependent and explanatory variables. 
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(3a) 

 

(3b) 

 

(3c) 

 
(3d) 

 

(3e) 

 

(3f) 

 
 

Figure 3 

1.2 SYMPTOMS 

 Symptoms of multicollinearity include: 

 The signs and values of estimated coefficients are inconsistent with the domain of knowledge 

 High pairwise correlations among X’s 

 Mismatch of F and t tests 

 Significant swings in parameter estimates when observations are added or deleted, and when one 

or more explanatory variables are deleted. 

 

To illustrate, equation (3) proffers a linear relationship between spacecraft payload costs and payload 

weight and volume, with Table 1 presenting a sample of historical observations. 

 (3) Y
i
 = α + β

1
X

1i
 + β

2
X

2i
 + β

3
X

3i
 + εi, where 

         Y  = payload cost in FY14K$ 

                    X1  = payload weight (kg) 

                    X2  = payload volume (cm3). 
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Table 1 

OLS yields equation (4), with t-statistics in parentheses. 

(4)  𝑌̂ = 24.8 + 0.94𝑋1 − 0.04𝑋2

                          (1.14)     (−0.52)
 

 R2 = 0.96 

 F-Statistic = 92 

 Standard Error of Estimate = 6.8 

 

These symptoms of multicollinearity emerge: 

 Wrong Sign of a Coefficient 

 The estimate of B2 is negative while a positive value is expected.  Normally, cost should increase 

with volume, not decrease. 

 High Correlation Coefficient 

 Pairwise correlation between X1 and X2 = 0.99. 

 Mismatch of t’s and F 

 t’s are low (statistically insignificant by a wide margin) but F and R2 are high. 

 

 

 

 

 

 

 

 

Y X1 X2

70 80 810

65 100 1009

90 120 1273

95 140 1425

110 160 1633

115 180 1876

120 200 2052

140 220 2201

155 240 2435

150 260 2686

Spacecraft Payload Data

H
o
:
 
β

1
 = 0; ρ = 0.29 

H
o
:
 
β

2
 = 0; ρ = 0.62 

F-statistic ρ < 0.00001 
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 Model Instability 

o Big swing in coefficient estimates (bouncing β’s) when an X is dropped from the 

equation.  X1 and X2 alone are highly significant 

   

    

 𝑌̂ = 24.6 + 0.51𝑋1

                   (14.24)
                                           

 0.94𝑋1

(1.14)
 

 

 𝑌̂ = 24.4 + 0.05𝑋2

                   (13.29)
                                         

−0.04𝑋2

(−0.52)
 

 

o Big swing in coefficient estimates (bouncing β’s) when observations are deleted.  

That is, the sample of 10 observations is randomly halved.  Regression equations are 

then estimated for each subsample, with these results: 

 

 
 

The weight of evidence of these symptoms clearly suggests a problem of damaging multicollinearity in 

the payload equation. 

Sample β0 β1 β2

Full; n = 10 24.80 0.94 -0.04

Random; n = 5 16.30 -0.45 0.10

Other half; n = 5 39.10 1.44 -0.10

OLS Estimates

Revised Equations Original Estimates 
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1.3 CONSEQUENCES 

 OLS estimates of coefficient parameters (β’s) remain BLU and consistent in the face of 

multicollinearity.2  But that’s cold comfort since variances and covariances increase, as Figure 4 

illustrates.   

 

 

 

 

 

 

 

 

Figure 4 

The increase in the sampling distribution variance, 𝜎
𝛽̂
2, is directly related to degree of multicollinearity as 

shown in equation (5). 

 

 

(5) 𝜎
𝛽̂
2 =

𝜎𝜀
2

(1 −𝑅𝑋𝑖 |𝑜𝑡ℎ𝑒𝑟 𝑋′𝑠
2 )(𝑛−1)𝜎𝑋𝑖

2
, 𝑤ℎ𝑒𝑟𝑒 0 ≤  R2

X𝑖
|
other X′s

 ≤ 1 

 

 

As the denominator of the equation demonstrates, the variance of the estimate of the regression parameter 

will decrease as sample size, n, increases and as the variance in the explanatory variable increases, all else 

equal.  This suggests that improved data collection might increase the precision of the estimates. 

  

                                                           
2 BLU: Best, Linear Unbiased [estimator] 

 Consistency: sampling distribution collapses on β as sample size increases to infinity. 

β 

Low multicollinearity 

High multicollinearity 

E(β̂) = β 

If 0, no impact (X’s orthogonal) 

If 1, then X’X matrix is singular 
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In any event, the increase in variance due to multicollinearity degrades precision of the estimates of the 

β’s as confidence intervals widen, as shown in equation (6) and Figure 5. 

(6)  𝛽̂ − 𝑡 ∗ 𝜎𝛽̂   ≤ 𝛽 ≤ 𝛽̂ − 𝑡 ∗ 𝜎𝛽̂
                          

 

 

 

 

 

 

 

 

Fi 

Figure 5 

 

Additionally, and in summary, severe cases of multicollinearity 

 Impart a bias toward incorrect model specification by 

o Making it difficult to disentangle the relative influences of the X's 

o Increasing the tendency for relevant X's to be discarded incorrectly from regression 

equations since the acceptance region for the null hypothesis is widened (type II 

error), as shown in equation (7): 

 

Ho: β = 0 

HA: β ≠ 0 

 

(7)   − 𝑡 ∗ 𝜎𝛽̂   ≤ 𝛽̂  ≤ +𝑡 ∗ 𝜎𝛽̂
                          

 

 Generate unstable models where small changes in the data produce big changes in parameter 

estimates [bouncing β's] 

 

 Jeopardize accuracy of predictions, which require a perpetuation of a 

o Stable relationship between Y and the X's 

o Stable interdependency amongst the X's, which is often not the case 

 

 Widen confidence and prediction intervals for Y, given a set of X’s. 

  

2.5% of area 

E(𝛽̂)= β 

95% confidence interval for estimate of β 

2.5% of area 

E(β̂) = β 
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1.4 HIDDEN EXTRAPOLATION 

Besides the direct implications to the model and related statistics, multicollinearity leads to hidden 

extrapolation.  Consider Figure 6, below.  In this example, there are two moderately correlated predictor 

variables, X1 and X2.  The range of X1 is (13, 49) and the range of X2 is (46, 187).  A new point to be 

predicted (X1=17, X2=130), in red, falls well within these bounds.  Intuitively, it does not seem that this 

point is extrapolating from the model.  However, this point does in fact suffer from hidden extrapolation.  

The blue ellipse provides a conceptual view of the independent variable hull (IHV).  This is the range of 

the data used to fit the model.  Attempting to predict points outside of this range leads to extrapolation 

and all of the problems that come with it.  The higher the correlation between X1 and X2, the narrower 

this ellipse becomes.  The lower the correlation between X1 and X2, the wider this range becomes – 

almost to the point of covering the entire range of both X1 and X2! 

 

Figure 6 

1.5 DIAGNOSIS 

1.5.1 OVERVIEW  

 A review of the literature reveals different perspectives for diagnosing the problem of severe 

multicollinearity. 

 

 Heuristic, or Rules of Thumb 

o Simple correlation coefficients: 𝑟𝑋𝑖,𝑋𝑗
  

o Mismatch between F and t statistics 

o Klein’s 𝑟𝑋𝑖,𝑋𝑗
 relative to over-all degree of multiple correlation Ry 

o R-squared values: R2𝑓𝑜𝑟 𝑋𝑖|𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑋′𝑠 
o Variance Inflation Factors 

 Computational 

o Condition number of the matrix, based on eigenvalues 

o Determinant of the scaled X′X matrix 
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 Testable Hypotheses 

o Bartlett’s χ2 for the presence of multicollinearity 

o Farrar-Glauber F-test and t-tests for the location and pattern of multicollinearity 

 

 Unfortunately, there’s no unanimous view of a single best measure of when “severity” precisely 

kicks in.  Various numerical rules of thumb are suggested, but they sometimes vary to an alarming and 

confusing degree.  A good practice therefore seems to use several highly-regarded heuristics coupled with 

the formal statistical tests to obtain better insights into the sample at hand.3  Use of the formal tests, 

however, does require an assumption that the X’s are joint normally distributed.  This is a departure from 

the usual assumption in the classical normal linear regression model that the X’s of equation (1) are fixed 

in repeated samples. 

 

 Use of the heuristics and tests are demonstrated using the software sizing data of Table 2 for ten 

observations on Computer Software Configuration Items (CSCI) 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Table 2 

The application of ordinary least squares yields the following estimated relationship between software 

development effort (Y) and the proffered explanatory variables (X’s) of Table 2. 

 

(8)  𝑌̂ = 0.161 + 0.078𝑋1 + 0.079𝑋2 + 0.013𝑋3 + 0.011𝑋4  
               (0.041)     (1.487)          (2.157)          (0.426)          (0.606)   (𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠)         

 

𝑅2 = 0.95; 𝐹 = 24 

 

 

1.5.2 RULES OF THUMB 

1.5.2.1 Value of a simple correlation coefficient 𝑟𝑋𝑖,𝑋𝑗
 

Metric: Collinearity harmful if |𝑟𝑋𝑖,𝑋𝑗
| > 0.90 

 Measures pairwise interdependence only 

 No pretense of theoretical validity 

 

 

 

                                                           
3 Use of eigenvalues will be covered in future updates to the Guide. 

 Y = Software development effort in 

 thousands of person months 

X
1
 = Function points in thousands 

X
2
 = Measure of number and complexity  

 of interfaces 

X
3
 = Productivity index (base =100) 

X
4
 = Environment index (base = 100) 

 

 

CSCI Y X1 X2 X3 X4

1 6.0 40.1 5.5 108 63

2 6.0 46.3 4.7 94 72

3 6.5 47.5 5.2 108 86

4 7.1 49.2 6.8 100 100

5 7.2 52.3 7.3 99 107

6 7.6 58.0 8.7 99 111

7 8.0 61.3 10.2 101 114

8 9.0 62.5 10.1 97 116

9 9.0 64.7 17.1 93 119

10 9.3 61.8 21.3 102 121

𝑟𝑋𝑖,𝑋𝑗
 

Simple correlation 
coefficient between 

 X
i
 and X

j
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Calculations: 

 

 

 

 

 

Result: 𝑟𝑋1,𝑋4
= 0.94  

 

1.5.2.2 Comparison of t-statistics with F and R2 

Metric: multicollinearity harmful if F significant (ρ < 0.05) but each coefficient 

insignificant (ρ > 0.05) 

 

Calculations: 

p-value for F-statistic 
• Probability that the X’s, evaluated together, have no influence on Y; 

i.e., α = β
1
 = β

2
 =β

3
 = β

4
 = 0; p-value = 0.002 

 

p-values for t-statistics 
• Probability that an individual X has no influence on Y; i.e., β

i
 = 0 

 

(9) 𝑌̂ = 0.161 + 0.078𝑋1 + 0.079𝑋2 + 0.013𝑋3 + 0.011𝑋4        
              (0.969)      (0.197)          (0.084)          (0.688)           (0.571)   (𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠) 

 

Result: 

 F-statistic highly significant (p < 1%) 

 But each X insignificant (three of the p’s > 50%!) 

 

1.5.2.3 Klein’s 𝑟𝑋𝑖,𝑋𝑗
 relative to over-all degree of multiple correlation Ry 

Metric: Multicollinearity harmful if any 𝑟𝑋𝑖,𝑋𝑗
 ≥  𝑅𝑦, where 

 𝑅𝑦  = multiple correlation coefficient between Y and all the X’s 

Calculations:  

𝑅2 = 0.95; 𝑅𝑦 = √𝑅2 = 0.97 

  

Result: 

 In all cases, 𝑟𝑋𝑖,𝑋𝑗
 ≤  𝑅𝑦 

X1 X2 X3 X4

X1 1.00 0.77 -0.52 0.94

X2 1.00 -0.26 0.73

X3 1.00 -0.41

X4 1.00

Simple Correlation Matrix of X's

X1 X2 X3 X4

X1 1.00 0.77 -0.52 0.94

X2 1.00 -0.26 0.73

X3 1.00 -0.41

X4 1.00

Simple Correlation Matrix of X's

Only X2 comes close 

to threshold 5% level 
of significance 
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 𝑟𝑋1,𝑋4
 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑅𝑦 

 

1.5.2.4 R2 values amongst the X’s 

Metric: Multicollinearity harmful if any R2𝑓𝑜𝑟 𝑋𝑖|𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑋′𝑠 > 0.90 

  

Calculation: example 

 

(10) 𝑋̂1 =  48.2 + 0.298𝑋2 − 0.271𝑋3 + 0.301𝑋4 ;  𝑅2 = 0.92 

         
 

Result: 

 R2𝑓𝑜𝑟 𝑋1|𝑋2, 𝑋3, 𝑋4 = 0.92 

 
 R2𝑓𝑜𝑟 𝑋2|𝑋1, 𝑋3, 𝑋4 = 0.61 

 
 R2𝑓𝑜𝑟 𝑋3|𝑋1, 𝑋2, 𝑋4 = 0.35 

 
 R2𝑓𝑜𝑟 𝑋4|𝑋1, 𝑋2, 𝑋3 = 0.89 

 

1.5.2.5 Variance Inflation Factors (VIFs) 

Metric: No formal criteria for determining when a VIF harmful.  Suggested threshold 

values cited in the literature include 4, 5, 10, 20, and 30.  However, one recommendation 

is that VIF > 5 suggests a closer examination and VIF > 10 indicates the presence of 

likely harmful multicollinearity.4 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
4 CEBoK uses a value of 10.  Module 8, “Regression Analysis,” page 106. 

Harmful 
multicollinearity 

Potentially 
Harmful 

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 R
2

Xi
|other X’s 

Danger 
zone 

VIF 𝑉𝐼𝐹
→∞

𝑎𝑠 𝑅
𝑥𝑖|𝑜𝑡ℎ𝑒𝑟 𝑥′𝑠
2 → 1

 
 

r R2

Xi, other Xs Xi, other Xs VIF

0.999 0.998 500.3

0.990 0.980 50.3

0.950 0.903 10.3

0.900 0.810 5.3

0.800 0.640 2.8

0.600 0.360 1.6

0.400 0.160 1.2

0.200 0.040 1.0

0.000 0.001 1.0
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Calculation:  

 Re-grouping terms in equation (5) gives 

 

(11) 𝜎
𝛽̂
2 = [

1

1 − 𝑅𝑋𝑖 |𝑜𝑡ℎ𝑒𝑟 𝑋′𝑠
2

]
𝜎𝜀

2

(n − 1)𝜎𝑋𝑖

2  

                = [
1

1 − 0.92
]

𝜎𝜀
2

(n − 1)𝜎𝑋𝑖

2 𝑓𝑜𝑟 𝑅𝑋1 |𝑜𝑡ℎ𝑒𝑟 𝑋′𝑠
2  

 

Result: 

 VIF 𝑓𝑜𝑟 𝑋1|𝑋2, 𝑋3, 𝑋4 = 12.5 

 
 VIF 𝑓𝑜𝑟 𝑋2|𝑋1, 𝑋3, 𝑋4 = 2.6 

 
 VIF 𝑓𝑜𝑟 𝑋3|𝑋1, 𝑋2, 𝑋4 = 1.5 

 
 VIF 𝑓𝑜𝑟 𝑋4|𝑋1, 𝑋2, 𝑋3 = 9.1 

 
1.5.3 COMPUTATIONAL 

Many computational metrics rely on the use of the centered and scaled model.  Remember, the traditional 

model has been defined as: 

𝑌𝑖 = 𝛼 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖 + 𝜀𝑖  

The centered and scaled model simply transforms each predictor 𝑿𝑖 into a corresponding 𝒁𝑖,  

𝒁𝑖 =
𝑿𝑖 − 𝑋̅𝑖

√∑ (𝑋𝑖𝑗 − 𝑋̅𝑖)
2𝑛

𝑗=1

 

And the new model becomes: 

𝑌𝑖 = 𝑌̅𝑖 + 𝛽1
∗𝑍1𝑖 + ⋯ + 𝛽𝑘

∗𝑍𝑘𝑖 + 𝜀𝑖 

Under this construct, the correlation matrix5 is easy to calculate, 

𝑐𝑜𝑟𝑟(𝑿) = 𝒁′𝒁 

1.5.3.1 Condition number of the matrix, based on eigenvalues 

Metric: Collinearity harmful if 𝜓 > 30 

 Taken as the maximum condition index of corr(X) 

 Based on the eigenvalue / eigenvector decomposition 

 

                                                           
5 This rewrite of the model is also useful for many other reasons. For example, the inverse of the correlation matrix 

yields the variance inflation factors (VIFs) on the diagonals. 

Variance Inflation Factor; 
= 1 when X’s orthogonal 

Potentially 
Harmful 
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Calculations:  it is best to let software calculate at least the eigenvalues for you! 

𝑐𝑜𝑟𝑟(𝑿) = 𝒁′𝒁 
 

𝝀 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

= (2.884, 0.782, 0.286, 0.048) 

𝜃𝑖 = √
max(𝜆)

𝜆𝑖
 

= (1.000, 1.920, 3.176, 7.751) 

𝜓 = max (𝜃𝑖) 

 

Result:  
 Condition number is 𝜓 = 7.751 < 30 

 Does not suggest harmful multicollinearity 

 

 

1.5.3.2 Determinant of the scaled X′X matrix 

Metric: Collinearity harmful if det(𝒁′𝒁) is very small 

 Solving the OLS model requires inverting the X’X, or 𝒁′𝒁 matrix 

 A very small determinant makes computer algorithms unstable – the 𝑿′𝑿 matrix 

cannot be calculated accurately, or even at all 

 Known as “singularity” problem – indicates an matrix that cannot be inverted 

 

Calculations: it is best to let software calculate this for you! 

det(𝒁’𝒁)  =  0.03085 
 

or (note that eigenvalues are rounded to 3 decimals) 

 

det(𝒁’𝒁) =  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 
= 2.884 ∙ 0.782 ∙ 3.176 ∙ 7.751 
= 0.03085 

 

Result: Determinant is small – but not “very small” in terms of computer precision 

– so does not suggest harmful multicollinearity. 
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1.5.4 TESTABLE HYPOTHESES 

 Formal statistical tests for the presence, location, and pattern of multicollinearity are available 

upon relaxation of the classical assumption of non-stochastic X’s in a regression equation.  Assuming 

now that the explanatory variables follow a joint-normal distribution, as in Figure 7, Bartlett’s χ2 test and 

the Farrar-Glauber t and F tests are useful complements to the rules of thumb in diagnosing problems of 

multicollinearity in data samples.  The ellipses in the figure represent iso-probabilities, such as a constant 

one-sigma or two-sigma deviations from the joint mean.  The greater the correlation between X1 and X2, 

the narrower the ellipses.  On the other hand, the ellipses become concentric circles in the case of 

orthogonality.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

 

1.5.4.1 Test for the PRESENCE of multicollinearity 

 

Bartlett’s χ2 test: 

   H0: X’s are orthogonal 

   HA: X’s not orthogonal 

 

Test statistic:      𝜒𝑣
2 = − [𝑛 − 1 −

(2𝑘+5)

6
] 𝑙𝑛|𝑹|,  𝑤ℎ𝑒𝑟𝑒 

 

  n = sample size 

  k = number of explanatory variables 

  v = number of degrees of freedom = 0.5k(k-1) 

 

Test criterion:       𝐼𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝜒𝑣
2 >   𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

2  , 𝑡ℎ𝑒𝑛 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 

 

Test result:       𝜒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑑
2  = 23.8 >   𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙=12.6 𝑎𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑓𝑖𝑐𝑎𝑛𝑐𝑒

2  

 

Test conclusion: X’s harmfully interdependent, linearly 

|𝑹| = 1 
Determinant of the simple 
correlation matrix of X’s 
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1.5.4.2 Test for the LOCATION of multicollinearity 

Farrar-Glauber F test: 

   H0: 𝑋𝑖 is not affected by multicollinearity (i = 1, 2, …, k) 

   HA: 𝑋𝑖is affected 

 

 

Test statistic:  𝐹𝑣 = [(𝑟∗𝑖 − 1)
(𝑛 −𝑘)

(𝑘−1)
] ,  𝑤ℎ𝑒𝑟𝑒 

 

  v = number of degrees of freedom = n – k, k - 1 

 

Test criterion:      𝐼𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹 > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙=8.9 𝑎𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑓𝑖𝑐𝑎𝑛𝑐𝑒 , 𝑡ℎ𝑒𝑛 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 

 

 

Test result and conclusion: 𝑋1 and 𝑋4 are significantly affected by multicollinearity 

 

 
 

1.5.4.3 Test for the PATTERN of multicollinearity 

Farrar-Glauber t test: 

   H0: 𝑟𝑖𝑗.𝑔 = 0 [𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑋𝑖𝑎𝑛𝑑 𝑋𝑗]    

HA: 𝑟𝑖𝑗.𝑔 ≠ 0  

 

 

Test statistic:  𝑡𝑣 = 𝑟𝑖𝑗.𝑔
(𝑛−𝑘−1)0.5

√(1−𝑟𝑖𝑗.𝑔
2 )

,  𝑤ℎ𝑒𝑟𝑒 

   

v = number of degrees of freedom = n - k - 1 

 

Test criterion: 

𝐼𝑓 𝑡𝑙𝑜𝑤𝑒𝑟 = −2.571 < 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 < 𝑡𝑢𝑝𝑝𝑒𝑟 = +2.571, 𝑡ℎ𝑒𝑛 𝑑𝑜 𝑁𝑂𝑇 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 

 

 

Test results:  

 

X1 X2 X3 X4

23.39 3.18 1.09 16.38

Affected Unaffected Unaffected Affected

F-Statistics

X2 X3 X4

X1 1.058 -1.177 3.788

X2 0.564 -0.103

X3 0.580

Observed t-Statistics

ith diagonal element of the inverse 
matrix of simple correlations 

g = set of all explanatory variables excluding Xi and Xj 
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Test conclusion: 

 Partial correlation between 𝑋1 and 𝑋4 significant; both terms, then, are seriously 

impacted by multicollinearity 

 All other partial correlations are statistically insignificant, but with 𝑟13.𝑔 

somewhat suspect. 

 

1.5.5 DIAGNOSTIC CONCLUSION 

 Heuristic indicators and formal statistical tests result in a diagnosis of harmful multicollinearity in 

the sample of Table 2.  Remedial action, therefore, seems in order to improve the precision of least-

squares estimates. 

 

 

1.6 REMEDIES 

1.6.1 OVERVIEW 

 In order of preference, the following are recommended courses of action for treating the problem 

of multicollinearity in a regression equation. 

 

 Collect additional observations 

 An increase in sample size, as equation (11) suggests, will likely decrease the variance of 

estimates of the regression coefficients and could break the pattern of multicollinearity in the 

data.  In defense cost analysis, however, data collection is difficult and often expensive.  

Nevertheless, the marginal benefit of adding even on or two more observations to a small 

sample may outweigh the marginal cost of collection.  

 Re-specify variables 

  In some cases, use of first differences or percent changes between successive 

observations in a time-series sequence may eliminate the multicollinearity problem.  

Combining two explanatory variables into one, such as weight and volume into density, may 

help, too. 

 Select a subset of X’s 

  Given the practical problems of implementing the first two remedies, selecting a subset of 

X’s for retention in the regression equation may be the next-best choice.  As explained in the 

next section, Frisch’s confluence analysis seems a robust methodology for the selection, 

based on a careful examination of the impact on the regression coefficients, t-statistics, sum 

of squared residuals, and R-bar squared.6 

 Use prior information 

  Prior information on the values of one or more coefficient parameters can be invaluable.  

To be useful, however, the information needs to be accurate.  In practical applications in 

defense cost analysis, the pedigree of prior knowledge is usually somewhat suspect. 

                                                           
6 Ragnar Frisch, Nobel Laureate in Economics, 1969.   “Statistical Confluence Analysis by Means of Complete 

Regression Systems,” Publication No. 5, University Institute of Economics, Oslo, 1934. 
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 Apply ridge regression 

  Ridge regression introduces bias into the regression equation in exchange for a decrease 

in variance of the coefficient estimates.  In its bare essence, ridge regression is a form of 

Bayesian statistical inference where choice of the ridge constant, k, requires prior knowledge 

about the unknown β’s in the equation under consideration. 

 Apply principal component regression 

Principal component regression performs a dimension reduction on the explanatory 

variables.  The correlation matrix is decomposed and the X’s are broken down into a smaller 

subset of principal components, Z’s, which explain some percentage of the overall variance.  

When high multicollinearity is present, there is much redundant information that can be 

explained in fewer dimensions.  In the extreme case of orthogonal X’s (i.e., zero correlation), 

this dimension reduction results in significant loss of information. 

 

1.6.2 CONFLUENCE ANALYSIS 

 In noting the natural tension in regression analysis between the urge to fully explain changes in Y 

by adding more explanatory variables to an equation and the inevitable need for at least some degree of 

parsimony, Ragnar Frisch coined the phrase “multiple collinear” 

 

“If the statistician does not … use an adequate technique for the statistical study 

of the confluence hierarchy, he will run the risk of adding more and more 

variates [variables] in the study until he gets a set that is in fact multiple collinear 

and where his attempt to determine a regression equation is therefore absurd.”7 

 

In Frisch’s confluence analysis, the bugaboo of multicollinearity is overcome by following these steps 

 

 Regress Y on that  𝑋𝑗 , 𝑗 = 1, 2, … , 𝑘 which has the highest simple correlation with Y 

 

 Gradually insert additional X’s into the regression equation 

 

 Examine effects on 

o Regression coefficients and their standard errors, 

o Standard error of the estimate, and 

o 𝑅2𝑜𝑟 𝑅
2
 

  

 Retain a variable in the regression equation only if it is “useful.” 

 

  

                                                           
7 Ibid. 
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Table 3 applies confluence analysis to the software sizing example.  In the first round of Frisch’s 

procedure, X1 is selected as the “best” explanatory variable of the group.8  In the second round, X2 clearly 

performs better than the alternatives, either X3 or X4, according to all three measures of goodness-of-fit: 

𝑅2, 𝑅
2

, 𝑎𝑛𝑑𝜎̂𝜀.  In the third and final round, the inclusion of X4 significantly damages the regression 

equation.  It renders X1 statistically insignificant and increases rather than decreases the standard error.  

Likewise, X3 increases the standard error and also changes the statistical sign of the constant term. 

 In summary, then, Frisch’s analysis yields these conclusions 

 X1 and X2 appear to be the most appropriate explanatory variables to use; 

 X3 appears superfluous and possibly detrimental; and  

 X4 is detrimental. 

 

  

                                                           
8 As shown on page 10, X1 has the highest VIF.  But, contrary to some guidance, rather than summarily dropping the 

variable from further consideration in the regression equation, it is retained in Frisch’s procedure. 
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Frisch’s Confluence Analysis 

 

Equation Parameter Estimate 
t-

Statistic  𝑅2 𝑅
2
   𝜎̂𝜀  

Initial estimate       

Y = f(X1,  X2, X3, X4, ε) α 0.161 0.041 0.9499 0.9099 0.3704 

 β1 0.078 1.487    

 β2 0.079 2.157    

 β3 0.013 0.426    

 β4 0.011 0.606    

1st round:             

Y = f(X1, ε) α 0.053 0.055 0.8877 0.8736 0.4386 

  β1 0.138 7.951      

       

2nd round:             

Y = f(X1,  X2, ε) α 1.493 1.627 0.9427 0.9263 0.3349 

 β1 0.097 4.682 
 

  

 β2 0.083 2.592    

       

Y = f(X1,  X3, ε) α -3.775 -0.922 0.9008 0.8724 0.4407 

 β1 0.148 7.272    

 β3 0.033 0.962    

       

Y = f(X1,  X4, ε) α 0.374 0.335 0.8937 0.8633 0.4562 

 β1 0.107 2.014    

 β4 0.014 0.629    

       

3rd round:             

Y = f(X1,  X2,  X3, ε) α -0.657 -0.186 0.9463 0.9194 0.3503 

 β1 0.105 4.178   
 

 β2 0.078 2.253 
 

  

 β3 0.018 0.632   
 

       

Y = f(X1,  X2,  X4, ε) α 1.791 1.765 0.9481 0.9222 0.3442 

 β1 0.067 1.567 
 

  

 β2 0.082 2.509    

 β4 0.013 0.792    
 

Table 3 

Best Choice 

𝑀𝑎𝑥 𝑟𝑌,𝑋𝑖
 

With X4 included, X1 now 

statistically insignificant 

𝜎̂𝜀  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑐𝑎𝑠𝑒𝑠 
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